Tag Archives: Medieval Archaeology

Game of Thrones Osteology: A Mormont Skull-Cup

19 Oct

Ever since the recent finale of season seven of the television series Game of Thrones (1), I’ve been revisiting the earlier episodes in order to remind myself of its intricate and myriad story-lines, alongside its cast of thousands of characters.  Sometimes this can be a bit of a headache and a puzzle watching an episode, trying to tease out the relationships, experiences and personal histories of the characters before the scene ends and you are whizzed off elsewhere around Westeros (or the Dothraki Plain).  This blog post may be about to do the same topic-wise, so prepare yourself!

New Lands, Old Fears

But Game of Thrones also offers a huge scope to visit different scenarios, locations and approaches, many of which are inspired from historical examples, such as the political intrigue of the War of the Roses (2.) in late medieval England and those of Imperial Rome.  One of more important settings is the The Wall, a huge ice wall construction built thousands of years before the present setting of the series to separate the wild north from the kingdoms of the south.  This structure is reminiscent of Hadrian’s Wall in northern England, which separated Roman-ruled Britannia to the more northern lands ruled by associated tribes of the Ancient Britons and Picts.  In the television series though the northern lands are where ‘Wildings’ roam freely, loose tribes who live lifestyles akin to hunter-gatherers.  It is also a place where rumours of the return of ‘White Walkers’ abound, human-like creatures said to be able to bring back the dead as animated revenants to haunt and slaughter the living.

Illustration of the Jewish mythological malicious spirit known as Dybbuk by Ephraim Moshe Lilien (1874-1925) in his Book of Job as it appeared in Die Bucher Der Bibel. The dybbuk is the dislocated soul of a dead person which goes on to possess another individual until it has accomplished its goal. Image from Wikipedia.

Before I get ahead of myself, the use of revenants in the Game of Thrones universe taps into a reoccurring and general unease in human cultures of the dead ‘coming’ back to life.  Obvious parallels can be found and cited in the historical record from medieval Europe, particularly from Norway and England, but other cultural and religious examples include Chinese Jiangshi (‘hopping zombie’), the Jewish Dybbuk (a malicious possessing spirit), and the Malaysian and Indonesian Pocong (ghost of the soul of the deceased individual).  The idea of the vampire, made famous by Bram Stoker’s Dracula novel of 1897 but present in many European traditions in one form or another in previous centuries, also fits this category.  It would be fair to say that a fundamental feature of these concepts is the unease surrounding the death in general and the transition undertaken by the body as it undergoes the processes of decomposition.

The Old Bear

During one of the recent episode re-watches I came across the breakdown of the Night’s Watch, the politically unaffiliated band of brothers who guard the Wall against northern incursions and attacks.  Safe from the internal politics of the Seven Kingdoms that make up Westeros, the Night’s Watch relies on volunteers or prisoners to help man the crumbling watch forts and man the walkways high atop the Wall.  Unfortunately the members can prove to be a traitorous lot at times, particularly in times of hardship, de-funding and general building dilapidation as the kingdoms to south war among themselves.

The character I want to focus on briefly here is the Lord Commander Jeor Mormont (the Old Bear), an elderly individual who holds top spot in the Night’s Watch and tries to provide steady leadership during trying times.  In season three, after an incursion into the frozen north ends badly following a somewhat terrifying encounter with the white walkers, the remaining men try to muster at a barely-defended longhouse (Craster’s Keep) before making for the safety of the Wall.  Before this happens though trouble breaks out and ends in outright treason among a portion of the broken and bloodied men.  The Lord Commander himself meets a bloody end at the hand of one of the mutineer’s blades and season three draws to a dramatic close.

The Lord Commander, though dead, still manages to make an appearance in season four. . .

Lord Commander Jeor Mormont, of the Night’s Watch, in better days at the Wall in Game of Thrones. Image credit: Game of Thrones Wiki.

. . . Alas not as a revenant, but as an inverted skull-cup!

In one of the early episodes to season four (it’s been too long since I saw it but I presume either episode one or two), we cut to one of the mutineers drinking wine out of the now defleshed skull of the former Lord Commander Mormont.  I have to say, the skull-cup must have been well-plugged of any canals and foramen, let alone the magnum foramen!

If you are an adult check out the video below and see if you can tell, from an osteological standpoint, what the mutineer did incorrectly whilst handling a human skull (minus the drinking of a cold vintage from it)?  Please note that the video contains strong language, sexual violence, and nudity.

If you had said grabbing the skull by the orbits (eye sockets), you would be quite correct!

Never grab a skull by the orbits or any other hole presented, as you run the risk of damaging and breaking the delicate facial bones by doing so.  Particularly at risk are the bones that help form the orbits and nasal aperture (nose hole), such as the lacrimals, nasals, zygomatics and sphenoid skeletal elements.  There is also a bit of a give away that this is either a plastic model or cast, as in the first shot of the skull you can clearly see the shallow depth of the anterior nasal aperture.  Apart from that though the model/cast looks quite good, relatively speaking.

A Mormont Skullduggery 

There is of course another oddity here – why go to the hard effort of cutting off the calotte (skull cap) and use the base of the neurocranium (brain case part of the skull) and splanchocranium (facial part of the skull) as the drinking vessel, instead of using the calvaria (the skull without the facial bones or lower jaw)?  Not only do you have the huge foramen magnum to plug, but also all of the intricate canals and foramen of the sphenoid bone, alongside the nasal aperture and orbits to prevent leakage.

It is, of course, for the shock factor and not for the practicality of drinking wine out of a skull.  This is Game of Thrones after all.  Still, it is impressive to see and one can imagine the (theoretical) hard work that has gone into plugging the anatomical gaps to make the butchered skull into a drinking vessel!

From Lord Commander to cup, the sorry fate of Jeor Mormont. Image courtesy of Youtube and HBO.

This thrilling north of the Wall strand in series three and four also reminded me of a few real-life archaeological parallels; from the Upper Palaeolithic post-mortem skull modification at Gough’s Cave, to the medieval treatment and disposal of the dead at Wharram Percy.  So without further ado, let us take a look at the archaeological evidence and see what the individuals at Gough’s Cave did differently to the mutineers at Craster’s Keep.

Upper Palaeolithic Head Scratcher: Gough’s Cave

At the Upper Palaeolithic location of Gough’s Cave in Somerset, England, evidence for the post-mortem butchery and processing of human remains is present in the skeletal material recorded and excavated from the archaeolological site.  The Magdalenian-period site dates to around 14,700 cal Before Present and is one of the few British Upper Palaeolithic archaeological sites to feature human skeletal remains at all.  It is also the only site in the British Isles to feature the presence of directly-dated skull-cups (N=3), as documented in the two images below for location of butchery marks and the skull-cups themselves (Bello et al. 2017: 1).

Though Gough’s Cave is not the only Magdalenian culture to feature human skull-cups, as the French sites of Le Placard and Isturitz also have evidence for the post-mortem production of skull-cups, it is unique to feature both the production of skull-cups and the evidence for cannibalism together at one site.  I’ve previously wrote a blog entry regarding the osteological and archaeological evidence for post-mortem manipulation of the bones, but it is worth just briefly going through it again here.

A selection of the skull elements from at least three individuals found at Gough’s Cave. Note the processed remains. Image credit: Natural History Museum.

The first hint that the skeletal remains were likely butchered was the find location and treatment of the skeletal elements.  The remains of at least five individuals, including children, adolescents and adults, were co-mingled with butchered animal remains.  The remains showed distinctive evidence for cut-marks and chopping, but more commonly for slicing and scraping (Stringer, et al 2011: 19).  In total three skull-cups were identified from individuals of differing ages and all butchery marks were identified as ectocranial (outside of skull) in nature.

The archaeologists were able to identify the five-step method for producing the skull-cups as the following:

  1. The head was detached from the body shortly after death, cuts at the base of the skull and cervical vertebrae indicate this.
  2. The mandible (lower jawbone) was then removed, with evidence of percussion fractures on the teeth of both the mandible and maxilla (lower and upper jaws), where present.
  3. The major muscles of the skull were carefully removed, along with the soft facial tissues and organs.
  4. Cut marks then indicate scalping took place.
  5. Finally the facial and base of the cranium were carefully struck off and the edges chipped to provide smoother surfaces (Bello et al. 2011).

The main locations of reshaping of the human crania from Gough’s Cave IMage credit: Figure 8 in Bello et al. 2011.

Once created it appears that the skull-cups were used as liquid vessels rather than for anything else, although the reason for their production remains unknown.  This function is similar to the fate of Lord Commander’s skull in the Game of Thrones television series, though we cannot know the reasons that drove the individuals who created the Gough’s Cave skull-cups in the first place.  The possibility of funerary ritual could be floated, but this would be speculation.  What is clear is that these skull-cups demanded careful preparation and processing to minimise damage.  The 2011 PLoS ONE article by Bello et al., referenced in the bibliography below, is well worth a read for the full archaeological and osteological context.

Medieval Wonders: Wharram Percy

In more recent research on a skeletal assemblage from the deserted medieval village of Wharram Percy, North Yorkshire, dating to the 11th to 13th century AD, indicate a number of peri-mortem and post-mortem practices being carried out in distinct phases (Mays et al. 2017).

A study on the disarticulated assemblage of human skeletal remains (N=10), located within a pit-complex at the village, has uncovered evidence for peri-mortem breakage, burning and knife and chop marks.  The archaeological context of the remains of the individuals indicated that this was a not discrete one-off episode but a part of a number of episodes within the residua of more than one event (Mays et al. 2017).  A minimum of at least ten individuals are represented by the skeletal material within the study, ranging in age from 2-4 years old to >50 years at death.

The osteological analysis of the nature of the peri-mortem and post-mortem treatment of the remains indicated that there could have been motivating factors of starvation cannibalism or fear of revenant corpses driving the behaviour.

The modern view of the deserted medieval village of Wharram Percy. Photograph by Paul Allison, courtesy of Wikipedia.

The examination of peri-mortem marks, largely sharp-force marks such as knife-marks, are largely confined to the upper body, along with evidence of long-bone peri-mortem breakage and low-temperature burning of a number of the bodies.  The image below highlights a number of the knife-marks present on rib elements, but it was noted that cut marks could be found on various clavicles, humeri, mandibles, vertabrae and crania bases present, indicating there was a concentration on the head and neck area in order to separate the head from the vertebral column and inflict injuries upon a severed head.  Meanwhile clavicular and upper rib cuts could be associated with dismemberment of corpses post-mortem.  Unlike the cut marks and low-temperature burning, the evidence for long-bone peri-mortem breaking involved both the upper and lower limbs to a similar extent, although the presence of breaking was limited among the assemblage (Mays et al. 2017: 450).

The sequence of events, from the osteological material and archaeological contexts, suggests that the bodily mutilation preceded the burning, where both where in evidence (Mays et al. 2011: 449).

Evidence of parallel cut marks on the external surface of one rib fragment (a) from Wharram Percy, with (b) showing further cut marks on another rib fragment indicative of peri- and post-mortem funerary processing. Image credit Mays et al. (2011: 441).

Further strontium isotopic analysis of the dental enamel of sixteen molars, to test the range for geographic origin via local geology, were selected from the medieval cemetery population and the pit-complex assemblage.  The testing revealed that nearly all individuals investigated all had local strontium values.  Only one pit-complex individual, ‘mandible D’, had a non-local value which may have been from further afield (but only just, possibly).  This analysis helped disprove the hypothesis that the pit-complex individuals, those with the knife-marks, and evidence for burning etc. came from a different geographic region than from the local area as compared to the control population of the cemetery group (Mays et al. 2017: 446).

In a 2017 University of Southampton press release for the article Simon Mays, a human skeletal biologist at Historic England known for his bioarchaeological research (such as Mays 1999), stated that:

The idea that the Wharram Percy bones are the remains of corpses burnt and dismembered to stop them walking from their graves seems to fit the evidence best.  If we are right, then this is the first good archaeological evidence we have for this practice. It shows us a dark side of medieval beliefs and provides a graphic reminder of how different the medieval view of the world was from our own.

As the above and the Mays et al. 2017 research article below make clear, there is good evidence within the Wharram Percy pit-complex assemblage for the argument of starvation cannibalism and/or for treatment to combat the revenant dead, that is in order to stop a corpse from re-animating as per traditional mythology.

And yet there are arguments against both interpretations – the fact that there are barely any cut or knife-marks below the chest on the osteological material analysed, that there is a lack of pot-polish from boiling of the remains, or the fact that the revenant dead are usually male whereas the Wharram Percy pit-complex individuals include well represented females and non-adults.

Instead the investigators are careful with their interpretation and note the likelihood that the assemblage at this location, time and evidence point towards revenant activity rather than starvation cannibalism.

A Worthy End?

So there we have it, a very quick tour through the ages to see that although the Lord Commander Mormont suffered an inglorious end as a skull-cup, he was by no means the only one and he could not come back as a revenant.  Although I picked fault with the method of his skull processing, we can see in the osteological and archaeological examples above that there are no set ways to process bodies during the peri- and post-mortem phases, therefore as bioarchaeologists or archaeologists it pays to investigate each avenue of evidence and see where it fits best within our current knowledge base.

Notes

(1.)  Okay, I admit it – I started to write this post a while ago and I never quite finished it or got round to writing out a full draft.  Game of Thrones, the HBO television series, has now finished with the somewhat rushed conclusion to Season 8 airing in 2019.  As of this blog post I am currently four volumes into the book series on which the television series is based, A Song of Ice and Fire by George R. R. Martin.  It’s intriguing so far and I’m keen to see how it diverges from the television series.

(2.)  The Wikipedia page on the War of the Roses has a fantastic family tree diagram with the affiliation of the kings, families and nobles of the various English civil wars that make up the 15th century conflict.  It is well worth having a look and then trying to take it in the full page – it is not something I am particularly familiar with!

Further Information

Bibliography

Bello, S. M. Parfitt, S. A. & Stringer, C. B. 2011. Earliest Directly Dated Skull-CupsPLoS ONE. 1-12. https://doi.org/10.1371/journal.pone.0017026. (Open Access).

Mays, S. 1999. The Archaeology of Human Bones. Glasgow: Bell & Bain Ltd.

Mays, S., Fryer, R., Pike, A. W. G., Cooper, M. J. & Marshall, P. 2017. A Multidisciplinary Study of a Burnt and Mutilated Assemblage of Human Remains from a Deserted Mediaeval Village in EnglandJournal of Archaeological Science. https://doi.org/10.1016/j.jasrep.2017.02.023. (Open Access).

White, T. & Folkens, P. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Guest Post: Launch of the University of Sheffield Rothwell Charnel Chapel Project Website by Greer Dewdney & Jennifer Crangle

16 Apr

Greer Dewdney is a graduate intern on the Rothwell Charnel Chapel Project, which is run by the University of Sheffield’s Department of Archaeology in conjunction with Holy Trinity Church.  A graduate of the department, Greer’s role is to help facilitate the project through its various stages.  Dr Jennifer Crangle, a University of Sheffield graduate and a Workers’ Educational Association tutor, is the project initiator whose doctoral research it is based upon.  Her research focuses on funerary archaeology and human osteology, with specific reference to medieval period England and Europe and a focus on the funerary treatment and the curation of the dead, both physically and ideologically.  Joe Priestly is an undergraduate student in history and archaeology at the department and also a freelance documentarian.  He acts as the project’s media designer and built the project website.

————————————————————————————————————————–

The Rothwell Charnel Chapel Project is a joint venture between the University of Sheffield’s Department of Archaeology and Holy Trinity Church at Rothwell, in Northamptonshire, which aims to further understanding of the Medieval ossuary beneath the church.  The ‘bone crypt’ as it is known to local Rowellians, is one of only two sites in England with a Medieval charnel chapel where the structure remains intact and with human remains in situ (the other is at St. Leonard’s Church in Hythe, Kent).  The Project was begun as a result of Dr. Jennifer Crangle’s PhD research, and since then has been continuously expanding to address the many and varied areas of interest that have arisen in the investigation of this almost unique archaeological site.

One of the main areas of focus for the project currently is the creation of a ‘digital ossuary’.  This is being produced through collaboration with the Computer Sciences department and the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield.  By taking a 3D laser scanner into the crypt and strategically positioning it around the ossuary to take multiple scans, a point cloud has been generated which accurately records the ossuary in three dimensions.  This point cloud is what can then be processed and refined into a full 3D digital model, which can be viewed and explored by people through a computer, so that the fascinating and engaging experience of visiting the bone crypt is no longer restricted to people who can get to Rothwell and have good enough mobility to tackle the stairs.  This research was presented at this year’s CAA (Computer Applications & Quantitative Methods in Archaeology) conference in Oslo, Norway, by Jennifer Crangle and Peter Heywood.

rothwell site

The new website introduces the background to the site and the aims of the project. All images courtesy of Joe Priestly.

Another of the current focuses is an attempt to secure some dates for the bones in the crypt, as obviously the question of when they date to is foremost in the minds of many of the researchers and local residents.  Recently, some surface samples were taken for CHRONO, the C14 radiocarbon dating service at Queen’s University Belfast, to test the nitrogen content of the material.  These have determined that the bones are well-preserved enough for radiocarbon dating to be feasible.  With kind permission of the Church Council, five full samples will be taken to be tested (again at Queen’s University), so hopefully there will soon be some more concrete ideas of when some of the remains are  from.

Although this won’t tell us when the bones were deposited in the charnel chapel, it will answer one of the most frequently asked and longstanding questions in the site’s history.  The dates could give us some further insights, however, into the use of the charnel chapel and how it was perceived by Rowellians; for example, if one or more of our samples date to the 1700s or later, then they had to have been brought in after the site’s rediscovery circa 1700.  This illustrates the continued belief, that the charnel room was a suitable place for depositing bones, even if it wasn’t being used as a charnel chapel in this time period.  As a part of this any and all results from the radiocarbon dating are going to reveal so much more about the charnel chapel than we currently know.

Recently the project was awarded funding from the University of Sheffield Engaged Curriculum, and this has enabled the hiring of 3rd year Archaeology & History undergraduate student Joe Priestley.  Joe designed and built the project website, as well as providing invaluable services in photography and documenting events.  This strand of the work has created a great relationship between the people of Rothwell and given them, and others from across the world, the ability to interact with, and further, the research happening at this fascinating and unique site.

Further Information

  • Find out more on the Rothwell Charnel Chapel project website, where the history of the site is discussed alongside the current research aims.  You can also take a video tour of the church and chapel itself with the researchers and members of the church involved with the project.  Keep an eye out on the site for open day tours of the site with the University of Sheffield researchers and the church representatives.  Typically these are held yearly but expect the project to pick up pace and introduce further open days as appropriate. 
  • Check out the Facebook group where we regularly post updates about our research and get involved with the project.  We also welcome feedback, so please do get in touch with questions or ideas.
  • Check out a previous These Bones of Mine photography essay on Rothwell from the 2014 open day.  The post delves into the background of the site and highlights what research has taken place over the years at Rothwell and the context for the current University of Sheffield research project.

Selection of Previous & Current Research on Rothwell

Crangle, J. N. 2013. The Rothwell Charnel Chapel and Ossuary Project. Past Horizons. Published 03/08/2013.  Accessed 14/04/2016. (Open Access).

Crangle, J. N. 2016. A Study of Post-Depositional Funerary Practices In Medieval England. University of Sheffield. Unpublished PhD/Doctoral Thesis.

Garland, A. N., Janaway, R. C. & Roberts, C. A. 1988. A Study of the Decay Processes of Human Skeletal Remains from the Parish Church of the Holy Trinity, Rothwell, NorthamptonshireOxford Journal of Archaeology7 (2): 235-249.

Gonissen, J. 2013.  New Tools in Anthropology: An Evaluation of Low-Cost Digital Imagery Methods in 3D Photogrammatry and Reflectance Transformation Imaging Applied to Fragile Osteological Material with Limited Access: the Case of Rothwell ossuary (Northamptonshire, UK). University of Sheffield. Unpublished MSc Thesis. (Open Access).

Parsons, F. G. 1910. Report on the Rothwell Crania. Journal of the Royal Anthropological Institute of Great Britain and Ireland. 40: 483-504.

Aging: ldentifying Puberty in the Osteoarchaeological Record

15 Feb

Aside from some recent technological mishaps (now resolved!), which has resulted in a lack of posts recently, I’ve also been doing some preliminary research into human skeletal aging and human biological aging in general.  Partly this has been out of general interest, but it was also background reading for a small project that I was working on over the past few months.

Knowledge of the aging of the skeletal system is of vital importance to the bioarchaeologist as it allows age estimates to be made of both individuals and of populations (and thus estimates of lifespans between generations, populations and periods) in the archaeological record.  The aging of human remains, along with the identification of male or female biological sex (not gender, which is socially constructed) and stature in adults, when possible, provides one of the main cornerstones of being able to carry out a basic demographic analysis of past populations – estimates of age, sex, stature at death, the construction of life tables and the construction of mortality profiles of populations, etc.  At a basic level inferences on the funerary treatment on individuals of different ages, and between different periods, can also be made.  For example, in identifying the possible differential treatment of non-adults and adults in funerary customs or of treatment during their lifetime as revealed by their burial context according to their age-at-death.

Growing Pains

However, aging is not quite straight forward as merely understanding and documenting the chronological age of a person – it is also about understanding the biological age of the body, where the body undergoes physiological and structural changes according to the biological growth stage (release of hormones influencing growth, maturation, etc).  Also of importance for the bioarchaeologist and human osteologist to consider is the understanding of the impact and the implications that the environment (physical, nutritional and cultural) can also have on the development and maturation of the skeletal system itself.  Taken as such aging itself is a dynamic process that can depend on a number of co-existing internal and external factors.

For instance, environmental stresses (i.e. nutritional access) can leave skeletal evidence in the form of non-specific markers of stress that can indicate episodes of stunted growth, such as Harris lines on the long bones (identifiable via x-rays), or episodic stress periods via the dentition (the presence of linear or pitted enamel hypoplasias on the teeth) (Lewis 2007).  Knowing what these indications look like on the skeleton means that the bioarchaeologist can factor in episodes of stress which may have led to a temporary cessation of bone growth during childhood or puberty, a period where the bones haven’t achieved their full adult length, due to a lack of adequate nutrition and/or physical stresses (White & Folkens 2005: 329).

It is recognised that humans have a relatively long adolescence and that Homo sapiens, as a species, senescence rather slowly.  Senescence is the process of gradual deterioration of function that increases the mortality of the organism after maturation has been completed (Crews 2003).  Maturation simply being the completion of growth of an individual themselves.  In an osteological context maturation is complete when the skeleton has stopped growing – the permanent dentition, or 2nd set of teeth, have fully erupted, and the growth of the individual skeletal elements has been completed and the bones are fully fused into their adult forms.

This last point refers to epiphyseal growth and fusion, where, in the example below, a long bone has ossified from several centres (either during intramembranous or endochondral ossification during initial growth) and the epiphyses in long bones fuses to the main shaft of the bone, the diaphysis, via the metaphysis after the growth plate has completed full growth following puberty (usually between 10-19 years of age, with females entering puberty earlier than males) (Lewis 2007: 64).  Bioarchaeologists, when studying the remains of non-adults, rely primarily on the development stage of the dental remains, diaphysis length of the long bones (primarily the femora) and the epiphyseal fusion stage of the available elements in estimating the age-at-death of the individual (White & Folkens 2005: 373).

bone growth

A basic diagram showing the ossification and growth of a long bone until full skeletal maturation has been achieved  Notice the fusion points of the long bones, where the epiphysis attaches to the diaphysis (shaft of the bone) via the metaphysis. Image credit: Midlands Technical College. (Click to enlarge).

After an individual has attained full skeletal maturation, the aging of the skeleton itself is often reliant on wear analysis (such as the wearing of the teeth), or on the rugosity of certain features, such as the auricular surface of the ilium and/or of the pubic symphysis, for instance, dependent on the surviving skeletal elements of the individual.  More general biological post-maturation changes also include the loss of teeth (where there is a positive correlation between tooth loss and age), the bend (or kyphosis) of the spinal column, and a general decrease in bone density (which can lead to osteoporosis) after peak bone mass has been achieved at around 25-30 years old, amongst other more visible physical and mental features (wrinkling of the skin, greying of the hair, slower movement and reaction times) (Crews 2003).

Gaps in the Record

There are two big gaps in the science of aging of human skeletal remains from archaeological contexts: a) ascertaining the age at which individuals undergo puberty (where the secondary growth spurt is initiated and when females enter the menarche indicating potential fertility, which is an important aspect of understanding past population demographics) and b) estimating the precise, rather than relative, age-at-death of post-maturation individuals.  The second point is important because it is likely that osteoarchaeologists are under-aging middle to old age individuals in the archaeological record as bioarchaeologists tend to be conservative in their estimate aging of older individuals, which in turn influences population lifespan on a larger scale.  These two issues are compounded by the variety of features that are prevalent in archaeological-sourced skeletal material, such as the effects of taphonomy, the nature of the actual discovery and excavation of remains, and the subsequent access to material that has been excavated and stored, amongst a myriad of other processes.

So in this short post I’ll focus on highlighting a proposed method for estimating puberty in human skeletal remains that was published by Shapland & Lewis in 2013 in the American Journal of Physical Anthropology.

Identifying Puberty in Human Skeletal Remains

In their brief communication Shapland and Lewis (2013: 302) focus on the modern clinical literature in isolating particular developmental markers of pubertal stage in children and apply it to the archaeological record.  Concentrating on the physical growth (ossification and stage of development) of the mandibular canine and the iliac crest of the ilium (hip), along with several markers in the wrist (including the ossification of the hook of the hamate bone, alongside the fusion stages of the hand phalanges and the distal epiphysis of the radius) Shapland and Lewis applied the clinical method to the well-preserved adolescent portion (N=78 individuals, between 10 to 19 years old at death) of the cemetery population of St. Peter’s Church in Barton-Upon-Humber, England.  The use of which spanned the medieval to early post-medieval periods (AD 950 to the early 1700) (Shapland & Lewis 2013: 304).

All of the individuals used in this study had their age-at-death estimated on the basis of dental development only – this is due to the strong correlation with chronological age and the limited influence of the environment and nutrition has in dental development.  Of the 78 individuals under study 30 were classed as probable males, 27 as probable females and 21 classed as indeterminate sex – those classed as a probable male or female sex were carefully analysed as the authors highlight that assigning sex in adolescent remains is notoriously problematic (the ‘holy grail’ of bioarchaeology – see Lewis 2007: 47), therefore only those individuals which displayed strong pelvic traits and were assigned an age under the 16 years old at the age-at-death were assigned probable male and female status.  Those individuals aged 16 and above at age-at-death were assigned as probable male and female using both pelvic traits and cranial traits, due to the cranial landmarks being classed as secondary sexual characteristics (i.e. not functional differences, unlike pelvic morphology which is of primary importance) which arise during puberty itself and shortly afterwards (Shapland & Lewis 2013: 304-306).

The method involves observing and noting the stage of each of the five indicators (grouped into 4 areas of linear progression) listed above.  It is worth mentioning them here in the sequence that they should be observed in, together in conjunction with the ascertained age at death via the dental analysis of the individual, which is indicative of their pubertal stage:

1) Mineralization of the Mandibular Canine Root

As noted above dental development aligns closer with chronological age than hormonal changes, however ‘the mineralization root of the mandibular canine may be an exception to this rule’ (Shapland & Lewis: 303). This tooth is the most variable and least accurate for aging, aside from the 3rd molar, and seems to be correlated strongly with the pubertal growth spurt (where skeletal growth accelerates during puberty until the Peak Height Velocity, or PHV, is reached) than any of the other teeth.  In this methodology the stage of the canine root is matched to Demirjian et al’s (1985) stages, where ‘Stage F’ indicates onset of the growth spurt and ‘Stage G’ is achieved during the acceleration phase of the growth spurt before PHV (Shapland & Lewis 2013: 303).

3) Ossification of the Wrist and the Hand

The ossification of the hook of the hamate bone and of the phalangeal epiphyses are widely used indicators in medicine of the pubertal stage, however in an archaeological context they can be difficult to recover from an excavation due to their small and discrete nature.  The hook (hammulus) of the hamate bone (which itself can be palpated if the left hand is held palm up and the bottom right of the hand itself is pinched slightly as a bony protrusion should be felt, or vice versa if you are left handed!) ossifies during the acceleration phase of the growth spurt in both boys and girls before HPV is attained.  The appearance, development and fusion of the phalangeal epiphyses are also used to indicate pubertal stage, where the fusion has been correlated with PHV in medical research.  With careful excavation the epiphyses of the hand can be recovered if present.

4) Ossification of the Iliac Crest Epiphysis

As this article notes that within orthopaedics it is noted that the ‘Risser sign‘ of the crest calcification is commonly used as an indicator of the pubertal growth spurt.  The presence of an ossified iliac crest, or where subsequent fusion has begun, can be taken as evidence that the PHV has passed and that menarche in girls has likely started, although exact age cannot be clarified.  The unfused iliac crest epiphyses are rarely excavated and recorded due to their fragile nature within the archaeological context, but their absence should never be taken as evidence that this developmental stage has not been reached (Shapland & Lewis 2013: 304).

5) Ossification and Epiphsyeal Fusion of the Distal Radius

The distal radius epiphysis provides a robust skeletal element that is usually recovered from archaeological contexts if present and unfused.  The beginning of the fusion is known to occur during the deceleration phase of puberty at around roughly 14 years of age in females and 15 years of age in males, with fusion completing around 16 years old in females and 18 years old in males (Shapland & Lewis 2013: 304).

Results and Importance

Intriguingly although only 25 (32%) of the 78 individual skeletons analysed in this study had all five of the indicators present, none of those presented with the sequence out of step (Shapland & Lewis 2013: 306).  The initial results indicate that it is quite possible to identify pubertal growth stage for adolescent individuals in the archaeological record based on the preservation, ossification and maturation stage of the above skeletal elements.  Interestingly, the research highlighted that for all adolescents examined in this study from St. Peter’s Church in Barton-Upon-Humber indicated that the pubertal growth spurt had started before 12 years of age (similar to modern adolescents), but that is extended for a longer time than their modern counterparts (Shapland & Lewis 2013: 308).  This was likely due to both genetic and environmental factors that affected the individuals in this well-preserved medieval population.

Further to this there is the remarkable insight into the possible indication of the age of the females entering and experiencing menarche, which had ramifications for the consideration of the individual as an adult in their community, thereby attaining a probable new status within their community (as is common in many parts of the world, where initiation ceremonies are often held to mark this important stage of sexual fertility in a woman’s life).  This is the first time that this has been possible to identify from skeletal remains alone and marks a landmark (in my view) in the osteological analysis of adolescent remains.

As the authors conclude in the paper the method may best be suited to large cemetery samples where it may help provide a ‘broader picture of pubertal development at a population level’ (Shapland & Lewis 2013: 309).  Thus this paper helps bridge an important gap between childhood and adulthood by highlighting the physiological changes that individuals go through during the adolescent phase of human growth, and the ability to parse out the intricate details our individual lives from the skeletal remains themselves.

Bibliography

Crews, D. E. 2003. Human Senescence: Evolutionary and Biocultural Perspectives. Cambridge: Cambridge University Press.

Lewis, M. E. 2007. The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.

Shapland, F. & Lewis, M. E. 2013. Brief Communication: A Proposed Osteological Method for the Estimation of Pubertal Stage in Human Skeletal Remains. American Journal of Physical Anthropology. 151: 302-310.

White, T. D. & Folkens, P. A. 2005. The Human Bone Manual. London: Elsevier Academic Press.